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SUMMARY

Fungal polyketides with the resorcylic acid lactone
(RAL) scaffold are of interest for growth stimulation,
the treatment of cancer, and neurodegenerative dis-
eases. The RAL radicicol is a nanomolar inhibitor of
the chaperone Hsp90, whose repression leads to
a combinatorial blockade of cancer-causing path-
ways. Clustered genes for radicicol biosynthesis
were identified and functionally characterized from
the endophytic fungus Chaetomium chiversii, and
compared to recently described RAL biosynthetic
gene clusters. Radicicol production is abolished
upon targeted inactivation of a putative cluster-spe-
cific regulator, or either of the two polyketide syn-
thases that are predicted to collectively synthesize
the radicicol polyketide core. Genomic evidence
supports the existence of flavin-dependent halo-
genases in fungi: inactivation of such a putative hal-
ogenase from the C. chiversii radicicol locus yields
dechloro-radicicol (monocillin I). Inactivation of a cy-
tochrome P450 epoxidase furnishes pochonin D,
a deepoxy-dihydro radicicol analog.

INTRODUCTION

Fungal polyketides sharing the resorcylic acid lactone (RAL)

scaffold display an impressive array of biological activities (Wins-

singer and Barluenga, 2007). Zearalenone (4) (Figure 1), isolated

from different Fusaria (teleomorph: Gibberella) species, is an es-

trogen agonist used for growth promotion in cattle (Winssinger

and Barluenga, 2007). Hypothemycin (5) (Figure 1) and similar

RALs with a cis-enone moiety are highly specific inhibitors of

a subset of the mitogen-activated protein (MAP) kinases that co-

ordinate the responses of the cell to its environment (Winssinger

and Barluenga, 2007). Radicicol (1) and its natural analogs,

monocillin I (2) and pochonin D (3) (Figure 1), bind to the Ber-

gerat-fold ATP-binding pocket of the GHKL superfamily pro-

teins, including heat shock protein 90 (Hsp90) (Roe et al.,

1999). The chaperone Hsp90 is essential for the folding and ac-

tivation of a wide range of oncogenic proteins but processes very

few housekeeping enzymes. Inhibition of Hsp90 promotes the

degradation of the oncogenic clients and leads to the combina-

torial blockade of multiple cancer-causing pathways (McDonald

et al., 2006). Hsp90 inhibitors also reduce protein aggregation in

models of several neurodegenerative diseases (Luo et al., 2007)

and increase thermotolerance in plants (McLellan et al., 2007).

Radicicol and geldanamycin (Figure 1), a bacterial ansamycin

whose derivatives are undergoing clinical trials, are competitive

inhibitors binding to the same target (Roe et al., 1999). Radicicol

is the most potent inhibitor of Hsp90 in vitro, but the reactivity of

its epoxide group, and the sensitivity of its conjugated double

bonds to Michael additions, renders it inactive in vivo (Wins-

singer and Barluenga, 2007). Intensive synthetic efforts are di-

rected at radicicol-like RALs that might overcome this metabolic

instability (Dakas et al., 2007; Winssinger and Barluenga, 2007).

Fungal polyketides are biosynthesized from malonyl-CoA pre-

cursors by polyketide synthases (PKS) that resemble a single

module of a bacterial type I PKS (Cox, 2007). Fungal PKSs incor-

porate a single ketoacyl synthase (KS) domain for the recursive

decarboxylative condensations of the precursors, covalently

loaded as acyl thioesters onto the acyl carrier protein (ACP) do-

main(s) by a single acyltransferase (AT) domain. Fungal nonre-

ducing PKSs (nrPKSs) producing unreduced polyketide chains

additionally feature an N-terminal starter unit acyltransferase

(SAT) domain (Crawford et al., 2006), a centrally located product

templating (PT) domain (Crawford et al., 2008a), and a C-terminal

thioesterase (TE) domain. Fungal highly reducing PKSs (hrPKSs)

producing reduced polyketide chains do not contain SAT, PT, or

TE domains but house single catalytic domains with ketoacyl

reductase (KR), dehydratase (DH), and enoyl reductase (ER) ac-

tivities. Fungal nrPKSs and hrPKSs orchestrate recursive bio-

synthetic processes involving the iterative use of their catalytic

domains, where the programming rules that determine polyke-

tide chain length, reduction (if any) of the b-ketoacyls, and the re-

giospecific cyclization of the final polyketide products remain

obscure (Cox, 2007).

Fungal RALs contain a resorcylate moiety (derived from an

unreduced polyketide chain) bridged by a 12- or 14-member

macrolactone ring (derived from a reduced polyketide chain).
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Whereas most fungal polyketides are biosynthesized by a single

PKS, the assembly of RALs requires both an hrPKS and an

nrPKS, encoded by clustered genes (Gaffoor and Trail, 2006;

Kim et al., 2005; Reeves et al., 2008). Thus, the zearalenone

hrPKS (PKS4) was proposed to biosynthesize a reduced hexa-

ketide, corresponding to C18–C7. This advanced starter unit is

condensed with three additional malonyl-CoA extender units

on the cognate nrPKS (PKS13). The formation of the acyl resor-

cylate by aldol condensation, and the release of the macrolac-

tone by intramolecular ester bond formation, are also carried

out by the nrPKS. The results of the recent enzymatic character-

ization of PKS13 are congruent with this model, and show that

PKS13 is a versatile resorcylic acid macrolactone synthase

(Zhou et al., 2008). While this manuscript was in review, a report

on the characterization of the hypothemycin biosynthetic gene

cluster from Hypomyces subiculosus and the sequencing of a pu-

tative radicicol biosynthetic locus from Pochonia chlamydospo-

ria has been published, proposing similar biosynthetic models

(Reeves et al., 2008).

The presence of a chlorine atom at C6 contributes to the cyto-

toxicity of radicicol (1) but has only a small influence on Hsp90

binding (Turbyville et al., 2006). In contrast, the dechloro analog

of pochonin D (3) is attenuated in its binding to Hsp90 (Moulin

et al., 2005). Although halogenated small-molecule natural prod-

ucts are abundant in nature, substrate- and regiospecific halo-

genase enzymes have only recently been characterized from

various prokaryotic secondary metabolite producers (Neumann

et al., 2008; van Pee et al., 2006). Flavin-dependent halogenases

that generate hypohalite equivalents are prevalent among these

enzymes (Hornung et al., 2007). Although sequence similarities

indicated that the putative radicicol biosynthetic locus of P. chla-

mydosporia encodes a deduced halogenase (Reeves et al.,

2008), no flavin-dependent or any other substrate- and regiospe-

cific halogenase enzymes have been functionally characterized

from fungi.

In a screening program for Hsp90 inhibitors from fungal iso-

lates of the Sonoran desert, we have reisolated radicicol from

Chaetomium chiversii, an endophyte of the Mormon tea (Ephe-

dra fasciculata), and monocillin I from Paraphaeosphaeria

quadriseptata, occurring in the rhizosphere of the Christmas

cactus (Opuntia leptocaulis) (Turbyville et al., 2006). Both

Figure 1. Structures of RALs and Geldana-

mycin

strains were also shown to produce the

alkyl isocoumarin congeners of their re-

spective RALs (Wijeratne et al., 2006).

Here we present a comparative se-

quence analysis of the radicicol biosyn-

thetic gene cluster of C. chiversii, includ-

ing genomic evidence for a conserved

family of putative flavin-dependent halo-

genases in fungi. Targeted gene disrup-

tions and isolation of the corresponding

metabolites, if any, provided functional

proofs for the roles of an hrPKS, an

nrPKS, a flavin-dependent halogenase,

a cytochrome P450, and a positive regulator in radicicol bio-

synthesis, and support a unifying model for the biosynthesis

of radicicol/monocillin/pochonin-type RALs and their isocou-

marin congeners.

RESULTS

Isolation of the Radicicol Biosynthetic Locus
We have used several pairs of PCR primers for the amplification

of PrnC-type flavin-dependent halogenase and separately

hrPKS gene segments from C. chiversii CS-36-62 genomic

DNA as described in Supplemental Data (available online). One

of the resulting amplicons encoded an hrPKS segment with

high similarity (58% identity/69% similarity) to the zearalenone

hrPKS (PKS4; GenBank accession numbers throughout;

ABB90283), whereas another amplicon obtained with the halo-

genase-specific primers encoded a protein segment with high

similarity to bacterial halogenases (e.g., ABM21576, 43% iden-

tity/65% similarity). Both PCR products were used as probes

to screen a genomic DNA library of C. chiversii. Two nonoverlap-

ping sets of fosmids were identified that hybridized with one or

the other probe only, proving that the two amplicons originated

from distinct genomic loci. Sequence sampling of the fosmid

set hybridizing with the halogenase-like probe revealed genes

for a putative pfam04820 halogenase-O-methyltransferase bi-

functional protein (ccHmt) and an hrPKS (ccPks01). The de-

duced CcPKS01 showed only low similarity to the zearalenone

hrPKS (39% identity/56% similarity). In contrast, sequencing

three representative fosmids covering the zearalenone hrPKS-

like amplicon revealed a 45,229 bp contig (Table 1) with clus-

tered genes encoding an hrPKS (CcRADS1) and an nrPKS

(CcRADS2), both highly similar to the zearalenone PKS pair. Fur-

ther genes in the cluster (Figure 2A) encoded a putative

pfam04820 halogenase (RadH), a cytochrome P450 (CYP,

RadP), a major facilitator superfamily (MFS) transporter (RadE),

and a bZIP leucine zipper transcription factor (RadR), all with

plausible functions in radicicol biosynthesis (see below). The

cluster is bordered by open reading frames (ORFs) encoding

housekeeping enzymes (Orf1, a putative trehalose-6-phosphate

synthetase/trehalose phosphatase and Orf3, a cystathionine

g-synthase/b-lyase). Two conserved hypothetical proteins
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(Orf2 and Orf4) and a tricarboxylate transporter (Orf5) are also

encoded in the sequenced locus (Table 1).

CcRADS1, CcRADS2, and RadR Are Essential for
Radicicol Biosynthesis
To ascertain the function of the putative radicicol biosynthetic

cluster, internal fragments of the putative PKSs ccRads1 and

ccRads2, as well as the disconnected ccPks01, were replaced

on the C. chiversii genome with the hph hygromycin resistance

marker gene using Agrobacterium-mediated transformation

(Zhang et al., 2003). The radR gene encoding a putative clus-

ter-specific regulator was similarly targeted for gene replace-

ment. Only 1%–5% of the hygromycin-resistant progeny origi-

nated from double-homologous recombination in the targeted

Table 1. Similarities of the Deduced Proteins from the C. chiversii Radicicol Biosynthetic Locus

Gene

model

Protein

length (aa)

Homologa, Organismb,

Function of the homolog Identity / Similarity (%) Conserved domain E-valuec

orf1 1008 CAP65155, P. anserina, unnamed

protein

79 / 88 COG0380, trehalose-6-phosphate

synthase

4e�118

pfam02358, trehalose phosphatase 9e�60

orf2 154 EAQ92919, C. globosum,

hypothetical protein

64 / 67 COG3791, uncharacterized

conserved protein

1e�06

radH 520 ACD39771, P. chlamydosporia,

Rdc2 halogenase

74 / 84 pfam01494, FAD-binding domain 0.002

EAQ86388, C. globosum,

hypothetical protein

54 / 70 pfam04820, Tryptophan halogenase 3e�09

ccRads2 2138 ACD39770, P. chlamydosporia,

Rdc1 nrPKS

61 / 75 SAT-KS-AT-PT-ACP-TE

ACD39753, H. subiculosus, Hpm3

nrPKS

57 / 73

ABB90282, G. zeae, PKS13 nrPKS 57 / 71

radR 453 EAA32450, N. crassa, hypothetical

protein

45 / 62d pfam00170, bZIP leucine zipper

transcription factor

0.004

radE 538 ACD39772, P. chlamydosporia,

Rdc3 MFS transporter

64 / 76 pfam07690, major facilitator

superfamily

2e�16

ACD39756, H. subiculosus, Hpm6

MFS transporter;

27 / 45

EAS30292, Co. immitis, MFS

transporter

49 / 69

ccRads1 2431 ACD39774, P. chlamydosporia,

Rdc5 hrPKS

68 / 81 KS-AT-DH-ER-KR-ACP

ACD39758, H. subiculosus, Hpm8

hrPKS

60 / 75

ABB90283, G. zeae, PKS4 hrPKS 61 / 76

radP 501 ACD39773, P. chlamydosporia,

Rdc4 CYP

69 / 80 pfam00067, cytochrome P450 4e�55

ACD39751, H. subiculosus, Hpm1

CYP

33 / 52

EDU51262, Py. tritici-repentis, CYP 43 / 62

orf3 588 EAQ91923, C. globosum,

cystathionine g-synthase

59 / 72 COG0626, cystathionine b-lyases /

cystathionine g-synthases

3e�44

orf4 1391 EAQ91930, C. globosum, predicted

protein

37 / 52d NDe NAf

orf5 301 EAQ91943, C. globosum,

tricarboxylate transporter

93 / 96 pfam00153, mitochondrial carrier

protein

1e�15 g

1e�11 g

1e�07 g

a Closest homolog in the P. chlamydosporia radicicol and H. subiculosus hypothemycin biosynthetic loci (if applicable), or in the rest of GenBank.
b Genus abbreviations: C, Chaetomium; Co, Coccidioides; G, Gibberella; H, Hypomyces; N, Neurospora; P, Podospora; Py, Pyrenophora.
c E value for the match against the conserved domain.
d Similarity on a shorter protein segment only.
e ND, not detected.
f NA, not applicable.
g Three tandem copies of this conserved domain.
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genes (Figures 3A and 3B). All transformants with ectopic or ho-

mologous integration of the disruption cassettes showed unal-

tered morphology. Radicicol production was unaffected by

ectopic integration of any of the disruption cassettes. Similarly,

radicicol production was undisturbed by the targeted disruption

of the ccPks01 gene (Figure 3D). However, radicicol production

was completely and specifically abolished in all the isolates with

the ccRads1, ccRads2 (Figures 3E and 3F), or the radR knock-

outs (data not shown). Thus, the CcRADS1 and CcRADS2

PKSs and the putative RadR regulator, but not the CcPKS01

PKS, are necessary for radicicol biosynthesis in C. chiversii.

Whereas the recombinant zearalenone nrPKS PKS13 was re-

ported to accept short-chain fatty-acid starters from primary

metabolism to produce acyl resorcylates in vivo (Zhou et al.,

2008), no significant amounts of shunt products were seen to

be produced by either C. chiversii RADS knockout strains.

The deduced CcRADS1 (Figure 2B) is a 2431 amino acid,

263.5 kDa enzyme belonging to the fungal clade I hrPKSs (Baker

et al., 2006), with 61% identity and 76% similarity to PKS4, the

zearalenone biosynthetic hrPKS (ABB90283). CcRADS1 also

shows 60% identity and 75% similarity to Hpm8, the hypothemy-

cin hrPKS from H. subicolosus (ACD39758), and 68% identity

and 81% similarity to Rdc5, the putative radicicol biosynthetic

hrPKS from P. chlamydosporia (ACD39774), both described

concurrently with our work (Reeves et al., 2008). These RAL

hrPKSs all share identical domain compositions: KS-AT-DH-

ER-KR-ACP. Their reductive domains are predicted to be fully

active based on their conserved amino acid sequence motifs

and the structures of the reduced polyketide portions of their

RAL products. Thus, the DH domains feature the HxxxGxxxxP

active site motif that encompasses part of the catalytic His/Glu

dyad (Khosla et al., 2007), albeit with the central Gly shifted

one amino acid to the N terminus (CcRADS1: amino acids

973–985). The ER and KR domains house well-conserved

NADPH-binding motifs (CcRADS1: amino acids 1848–1857

and 2055–2064, respectively), with the KR domains carrying

Figure 2. The Radicicol Biosynthetic Locus

of C. chiversii and Proposed Biosynthesis

of Radicicol

(A) White arrows: open reading frames encoding

hypothetical proteins; black arrows: genes shown

to be involved in radicicol biosynthesis by gene

disruption; gray arrows: genes proposed to be

involved in radicicol biosynthesis; two-way gray

arrows: the sequenced fosmids. The putative

radicicol biosynthetic locus of P. chlamydosporia

(Reeves et al., 2008) is shown for comparison.

(B) Model for the biosynthesis of radicicol. The

timing of macrolactone release versus polyketide

tailoring following resorcylic acid ring closure is

not determined.

the full Lys-Ser-Tyr catalytic triad

(CcRADS1: K2159, S2184, Y2197) (Kho-

sla et al., 2007). These hrPKSs are pre-

dicted to initiate RAL biosynthesis by

assembling the reduced polyketide

chains that serve as starter units for the corresponding nrPKSs

(Figure 2B, see below).

The deduced CcRADS2 is a 2138 amino acid, 230.5 kDa

enzyme belonging to the fungal clade I nrPKSs (Baker et al.,

2006), with 57% identity and 71% similarity to PKS13, the zear-

alenone biosynthetic nrPKS (ABB90282). CcRADS1 also shows

57% identity and 73% similarity to Hpm3, the hypothemycin

nrPKS (ACD39753), and 61% identity and 75% similarity to

Rdc1 (ACD39770), the putative radicicol biosynthetic nrPKS

from P. chlamydosporia (Reeves et al., 2008). These RAL nrPKSs

all feature identical domain compositions: SAT-KS-AT-PT-ACP-

TE (Figure 2B). The SAT domains of the RAL nrPKSs are pro-

posed to act as chain initiation selectivity filters and to load the

reduced polyketide chains supplied by the hrPKS partners as

starter acyl units onto the ACP domains (Crawford et al., 2006,

2008c; Gaffoor and Trail, 2006). The conserved Cys in the pro-

posed SAT active site motif GxCxG (Crawford et al., 2008b) is re-

placed in all RAL nrPKSs by a Ser (CcRADS2: S124). By analogy

to AT domains, this Ser could form an active site dyad with a con-

served His (CcRADS2: H249), while a conserved Gln (CcPKS2:

Q16) stabilizes the oxyanion hole during acyl transfer (Crawford

et al., 2006; Khosla et al., 2007). However, replacement of the

active site Ser with Ala has been shown not to affect starter

unit recognition in the heterologously expressed PKS13 (Zhou

et al., 2008). In zearalenone, hypothemycin, and radicicol, the

nonaketide-ACP thioester intermediates undergo regioselective

C2-C7 aldol cyclization to yield the resorcylic acid moiety, pos-

sibly guided by the PT domain (Crawford et al., 2008a). Whereas

most fungal nrPKS TE domains act as Claisen cyclases creating

C-C bonds (Cox, 2007; Crawford et al., 2008a), the TE domains

of the RAL nrPKSs release their macrolactone products by ester

formation, with C17-OH serving as the nucleophile (Zhou et al.,

2008). The catalytic His of the TE of PKS13, the zearalenone

nrPKS, was suggested to be replaced by an Arg that might

facilitate acyl transfer instead of hydrolysis (Zhou et al., 2008).

However, the PGDHFTM motif with the catalytic His is well
Chemistry & Biology 15, 1328–1338, December 22, 2008 ª2008 Elsevier Ltd All rights reserved 1331
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conserved in all RAL nrPKSs (CcRADS2: eaDHleM, amino acids

2106–2112; PKS13: PaDHleM, amino acids 2006–2012) as part

of a Ser-Asp-His catalytic triad (CcRADS2: S1930, D1957,

H2109) (Fujii et al., 2001; Khosla et al., 2007).

The deduced RadR is a 453 amino acid protein showing sim-

ilarities to various hypothetical fungal transcription factors with

the pfam00170 basic region leucine zipper domain near their

N terminus (RadR: amino acids 28–78). RadR is also similar to

ZEB2 (ABB90285, 24% identity/39% similarity) that was shown

to act as a transcriptional regulator for zearalenone biosynthesis

in Gibberella zeae (Kim et al., 2005). Interestingly, neither the

H. subicolosus hypothemycin nor the putative P. chlamydosporia

radicicol biosynthetic gene cluster (Figure 2A) encodes similar

regulators (Reeves et al., 2008). The amino acid sequence of

RadR and the abolishment of radicicol biosynthesis in the knock-

out strain are consistent with RadR being a cluster-specific pos-

itive regulator for radicicol biosynthesis in C. chiversii.

radH Encodes a Fungal Flavin-Dependent Halogenase
The C. chiversii radicicol biosynthetic gene cluster also encodes

enzymes with potential roles in post-PKS tailoring. Thus, radH

encodes a 520 amino acid, 56.4 kDa protein that is highly similar

to unidentified fungal proteins with the pfam04820 conserved

domain like EAQ86388 of C. globosum (54% identity/70% simi-

larity), and to the putative halogenase Rdc2 from P. chlamydo-

sporia (ACD39771, 74% identity/84% similarity). RadH also dis-

plays clear similarities to bacterial halogenases like CrpH from

Nostoc sp. (ABM21576, 38% identity/58% similarity). RadH

shares with bacterial flavin-dependent halogenases a FAD-bind-

ing domain (pfam01494) with the nucleotide-binding motif

GxGxxG (amino acids 13–18), and the partially overlapping

pfam04820 (tryptophan) halogenase conserved domain with

the WxWxIP active site cavity motif (amino acids 234–239).

The bulky Trp side chains have been proposed to distance the

enzyme-bound substrate from the flavin hydroperoxide to

Figure 3. Insertional Inactivation of ccRads1 and ccRads2

(A) Scheme for the double-homologous recombination between the C. chiversii genome and the T-DNA with the ccRads1 disruption cassette. LB and RB, left and

right borders of the T-DNA; B, BamHI restriction site.

(B) Southern hybridization against BamHI-digested total DNA of several transformants. The arrows point to the expected hybridizing fragment. M, marker.

(C–F) HPLC traces of extracts from fermentations of C. chiversii strains.

(C) Strain CS-36-62 (wild-type).

(D) The strain disrupted in ccPks01 (ccPks01 KO).

(E) The strain disrupted in ccRads1 (ccRads1 KO).

(F) The strain disrupted in ccRads2 (ccRads2 KO).

*, the expected position of the peak due to radicicol (1) (absent). Peaks a and b are due to 6-hydroxymethyleugenin and 6-methoxymethyleugenin, respectively.
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prevent a direct monooxygenase reaction (Neumann et al., 2008;

van Pee et al., 2006). Instead, a chloride ion bound near the co-

factor attacks the oxidized flavin to produce hypochlorous acid,

captured by the strictly conserved Lys (RadH: K74) as a lysine

chloramine that reacts with high regiospecificity with the sub-

strate (Neumann et al., 2008).

Because no fungal halogenases have been experimentally

characterized to date to the best of our knowledge, we sought

experimental proof for the involvement of RadH in the chlorina-

tion of the polyketide scaffold of radicicol by performing a di-

rected gene knockout of radH. The production of radicicol was

found undisturbed in isolates with ectopic integration of the dis-

ruption cassette. However, radicicol production was completely

abolished, and a new HPLC peak with similar, but not identical

mobility to radicicol was detected in all fermentation extracts

with the radH knockout isolates (Figure 4C). Fourier transform

ion cyclotron resonance mass spectrometry (FTICR-MS; Fig-

ure 4E) and 1H NMR spectroscopy (Supplemental Data) of the

isolated compound proved that this product is 6-dechloro-radi-

cicol, identical with monocillin I (2) previously isolated from vari-

ous fungi (Winssinger and Barluenga, 2007). No other RAL prod-

uct was detected in these fermentations. The production of the

biogenetically unrelated eugenitin (peak c, Figure 4B) was also

increased in many transformants, irrespective of their origin from

ectopic or homologous integration. Monocillin I could not be con-

verted to radicicol by feeding the isolated compound to the

ccRads1 or ccRads2 knockout strains during fermentations, or

during attempts to reconstitute the halogenation reaction using

crude extracts prepared from these strains (Supplemental Data).

However, the amino acid sequence of RadH and the production

of the dechloro-radicicol analog in the corresponding knockout

strain are consistent with RadH being a flavin-dependent

Figure 4. Insertional Inactivation of radH and radP

(A) HPLC trace of a mixture of authentic monocillin I (2) and radicicol (1).

(B–D) HPLC traces of extracts from fermentations of C. chiversii strains.

(B) Strain CS-36-62 fermentation (wild-type).

(C) The strain disrupted in radH (radH KO).

(D) The strain disrupted in radP (radP KO).

(E) FTICR-MS spectrum of monocillin I (2) isolated from the fermentation of C. chiversii disrupted in radH.

(F) FTICR-MS spectrum of pochonin D (3) isolated from the fermentation of C. chiversii disrupted in radP. *, internal standard.

Peaks a, b, and c are due to 6-hydroxymethyleugenin, 6-methoxymethyleugenin, and eugenitin, respectively.
Chemistry & Biology 15, 1328–1338, December 22, 2008 ª2008 Elsevier Ltd All rights reserved 1333
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substrate- and regiospecific halogenase that installs the chlorine

atom at C6 of radicicol.

radP Encodes a Putative CYP Epoxidase
Another deduced tailoring enzyme found encoded in the radici-

col biosynthetic cluster is RadP, a 501 amino acid, 57.2 kDa

putative protein with the pfam00067 cytochrome P450 (CYP) do-

main. The deduced RadP shows high similarity to a variety of

CYP monooxygenases including EDU51262 from Pyrenophora

tritici-repentis (43% identity/62% similarity), and the putative

radicicol hydroxylase Rdc4 from P. chlamydosporia (ACD39773,

69% identity/80% similarity). RadP features the conserved Thr

(T307) implicated in O2 binding (Buchatskii et al., 2001), as well

as the conserved E/DxxR motif (amino acids 359–362) and the

conserved FxxGxHxCxGxxxA motif with the invariable Cys

(amino acids 437–450, C444), both involved in heme binding.

Radicicol features an epoxide moiety at C14(15) that might

be expected, in analogy with epothilone biosynthesis (Molnár

et al., 2000), to be installed by a CYP epoxidase acting on

a PKS-generated double bond. To establish the role of RadP

as radicicol epoxidase, the radP gene was inactivated by di-

rected gene knockout. Ectopic integrants, representing more

than 99% of the transformants in this case, produced radicicol

undisturbed. However, radicicol production was completely

abolished in all radP knockout isolates, with the concomitant ap-

pearance of a single new RAL with decreased chromatographic

mobility (Figure 4D) and a significant red shift compared to

radicicol (from 276 to 314 nm). This new RAL was isolated and

subjected to FTICR-MS (Figure 4F), 1H NMR, and DQF-COSY

spectroscopy (Supplemental Data). Although the limited amount

of isolated material precluded us from obtaining 13C NMR spec-

tra, the above data revealed this product to be 14(15)-deepoxy-

12(13)-dihydro-radicicol, identical to pochonin D (3) previously

isolated from P. chlamydosporia (Hellwig et al., 2003). Pochonin

D could not be converted to radicicol by feeding the isolated

compound to the ccRads1 or ccRads2 knockout strains during

fermentations, or during attempts to reconstitute the epoxidation

reaction using crude extracts prepared from these strains (Sup-

plemental Data). However, the amino acid sequence of RadP

and the production of a deepoxy-radicicol analog in the corre-

sponding knockout strain are consistent with the proposed

role of RadP as the radicicol C14(15) CYP epoxidase.

DISCUSSION

The current work describes the functional characterization of the

genes for the biosynthesis of radicicol, an Hsp90 inhibitor RAL

polyketide, from the endophytic fungus C. chiversii. Clustered

genes encoding two PKSs, a halogenase, and a CYP were iden-

tified by exploiting the expected similarity of the radicicol biosyn-

thetic genes to bacterial flavin-dependent halogenases and the

nrPKS and hrPKS genes for the biosynthesis of the RAL zearale-

none. Targeted disruptions of the nrPKS, the hrPKS, and a puta-

tive transcriptional regulator specifically abolished radicicol bio-

synthesis, whereas knockout of the putative halogenase led to

the production of the dechloro analog of radicicol (monocillin I).

Targeted disruption of the CYP furnished a deepoxy analog

that was also devoid of the C12-C13 cis double bond. Disruption

of orf3 encoding a putative cystathionine g-synthase/b-lyase led

to no change in radicicol production, establishing the right bor-

der of the C. chiversii cluster (data not shown). Attempts to dis-

rupt orf1 encoding a putative trehalose-6-phosphate synthetase

at the left flank of the cluster were unsuccessful and not pursued

further.

The putative P. chlamydosporia radicicol biosynthetic cluster

whose sequencing coincided with our work (Reeves et al.,

2008) contains orthologous genes to the C. chiversii cluster

(Table 1) but appears to be scrambled by two inversions

(Figure 2A). The C. chiversii cluster-specific regulator, encoded

by radR, is missing from the sequenced P. chlamydosporia locus.

The radicicol biosynthetic machineries in both fungi must recruit

an NAD(P)H-dependent flavin reductase to provide reduced

cofactor for the halogenase, and a NADPH-dependent CYP re-

ductase to supply electrons to the CYP. Because neither halo-

genases nor CYPs require exclusive reductase partners (Molnár

et al., 2005; van Pee et al., 2006), these two functions must be

provided by housekeeping enzymes. No significant synteny of

the C. chiversii radicicol locus was detected with the completely

sequenced C. globosum genome (http://www.broad.mit.edu/

annotation/fungi/fgi/).

The overwhelming majority of fungal polyketides are produced

by single PKS enzymes with one set of active site domains that

are used iteratively in a programmed recursive biosynthetic pro-

cess. Remarkably, the biosynthesis of fungal RALs, as shown for

zearalenone (Gaffoor and Trail, 2006; Kim et al., 2005), hypothe-

mycin (Reeves et al., 2008), and now for radicicol, exploits both

an hrPKS and an nrPKS for the biosynthesis of a single continu-

ous polyketide chain. With the nrPKS utilizing the product of the

hrPKS as a starter unit, the collaborating RAL PKSs represent

a conceptual step toward modularity. A close parallel to RAL bio-

synthesis is the assembly of norsolorinic acid, where a special-

ized fatty-acid synthase (a PKS equivalent) produces a hexa-

noate starter extended by an nrPKS (Crawford et al., 2008b).

The biosynthesis of T toxin requires two hrPKSs to build a single

linear polyketide chain (Baker et al., 2006). In contrast, the two

PKS systems for lovastatin, compactin and squalestatin, pro-

duce two separate polyketide chains that are conjoined via ester

bonds by post-PKS tailoring enzymes (Cox, 2007).

The nonaketide backbone of zearalenone and hypothemycin

were proposed to be assembled, on the basis of their reduction

patterns, through three rounds of nonreductive chain exten-

sions on nrPKSs that use a reduced hexaketide starter from

their hrPKS partners (Gaffoor and Trail, 2006; Reeves et al.,

2008; Zhou et al., 2008). The structure of radicicol does not al-

low for a similarly clear prediction. Thus, it is currently unknown

whether CcRADS2 (and the putative Rdc1 from P. chlamydo-

sporia) extends a b-keto hexaketide starter unit using three

malonyl-CoA building blocks, or elaborates a pentaketide

starter unit with four malonyl-CoA extenders (Figure 2B). A cor-

relation was previously proposed between the primary se-

quences of the SAT domains and their starter unit substrates

(Cox, 2007; Crawford et al., 2008b), and separately between

the sequences of PT domains and the number of chain exten-

sions performed by the nrPKSs (Cox, 2007). The sequences

of the SAT domains of the zearalenone, hypothemycin, and

the two radicicol nrPKSs are remarkably similar to each other

while distinct from known C2 and C6 acceptors (Crawford

et al., 2008b). Similarly, the PT domains of these nrPKSs
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show high mutual identities, but are removed from known hex-

aketide synthases like those that produce 1,3,6,8-tetrahydroxy-

naphthalene (BAA18956), heptaketide synthases like those that

yield YWA1 (AAC39471), or octaketide synthases like those that

produce norsolorinic acid (AAS66004). However, the limited

number of nrPKSs with characterized starter units and product

chain length specificities limits the scope of these comparisons

and denies insight into the division of labor between the radici-

col PKS partners.

Although the first halogenating enzyme (a nonspecific chloro-

peroxidase) was isolated from a filamentous fungus, no sub-

strate- and regiospecific halogenases were functionally charac-

terized previously from any fungal sources (van Pee et al., 2006).

The radicicol biosynthetic gene clusters from C. chiversii and

P. chlamydosporia each encode a putative enzyme (RadH and

Rdc2, respectively) with high similarity to characterized flavin-

dependent bacterial halogenases with the pfam04820 (trypto-

phan) halogenase conserved domain. The targeted disruption

of RadH from C. chiversii leads to the production of the 6-dech-

loro analog of radicicol, monocillin I, providing to our knowledge

the first functional evidence for a flavin-dependent halogenase in

a fungal strain. Bacterial flavin-dependent halogenases form two

subfamilies: PrnC-type halogenases acting on phenol and

pyrrole moieties, and PrnA-type halogenases processing trypto-

phan residues (Neumann et al., 2008; van Pee et al., 2006). A

further correlation between the phylogenetic divergence of

PrnC-type halogenases and their substrate chemotypes has

also been noted (Hornung et al., 2007). A survey of the available

34 fungal genome sequences (http://www.broad.mit.edu/

annotation/fungi/fgi/) revealed 29 uncharacterized conserved

proteins with the pfam04820 conserved domain. A phyloge-

nomic analysis (Figure S1) indicates an intimate clustering of

the deduced fungal pfam04820 proteins with selected bacterial

PrnC- and PrnA-type halogenases (Hornung et al., 2007) with

multiple clades supported by significant bootstrap values.

PrnA-type bacterial halogenases acting on free Trp (Yeh et al.,

2005) form the first clade basal to all other sequences, reflecting

the low sequence similarity of PrnA- and PrnC-type enzymes

(van Pee et al., 2006). The next clade contains selected bacterial

and fungal oxidoreductases with the PRK10015 conserved do-

main: PRK10015 and pfam04820 proteins belong to the same

protein fold superfamily. The small fungal clade I contains

pfam04820 enzymes with no functionally characterized mem-

bers. Present in the Aspergillus cluster (Eurotiomycetes), Magna-

porthe grisea (Sordariomycetes), Botrytis cinerea and Sclerotinia

sclerotiorum (both Leotiomycetes), these putative enzymes

share conserved motifs with, but branch basal to, the bacterial

PrnC-type halogenases. The first clade of bacterial PrnC-type

halogenases includes proteins similar to the anabaenopeptolide

tyrosine halogenase (CAC01605) acting on a carrier protein-

bound substrate (Rouhiainen et al., 2000). The bacterial PrnC

clade II includes enzymes acting on free pyrrole substrates, as

well as chlorinases from the tetracycline and neocarzilin clusters

modifying polyketides. The RadH radicicol halogenase (as well

as the putative Rdc2 from P. chlamydosporia) belongs to the fun-

gal clade II enzymes: these proteins might modify polyketides or

other secondary metabolites. The phylogenetic distribution of

these putative fungal halogenases is sporadic: they are present

in Coprinus cinerea (Homobasidiomycetes), the Aspergillus clus-

ter, and in Chaetomium and Pochonia spp. (Sordariomycetes),

but are apparently absent in other Sordariomycetes like the

Fusarium cluster. Finally, the bacterial clade III PrnC halogenases

tailor carrier protein-bound polyketides and nonribosomal pep-

tides or their CoA-bound precursors (Dorrestein et al., 2005).

The only biosynthetic step not accounted for by the radicicol

clusters is the synthesis of the cis double bond at C12-C13.

Although PKSs almost always produce E double bonds, different

mechanisms for Z double-bond formation by prokaryotic modu-

lar PKS systems have been proposed (Alhamadsheh et al., 2007;

Tang et al., 2004). Conceptually, the biosynthesis of cis double

bonds by the iterative fungal hrPKSs is even more problematic,

because a single set of active sites should yield both geometries.

With only a single KR domain, the formation of cis double bonds

cannot be dictated by the configuration of the hydroxyl moieties

as proposed for separate A- or B-type KR domains in bacteria

(Caffrey, 2003). Indeed, the KR sequences from the two radicicol

hrPKSs (CcRADS1 and Rdc5) broadly correspond to B-type

bacterial KRs present in modules producing E double bonds.

However, a polyketide carbon chain rotation during an ‘‘out of

register’’ dehydration, as proposed for epothilone biosynthesis

(Tang et al., 2004), cannot be excluded. In other prokaryotic

systems, Z double-bond formation was proposed to be the

result of accessory proteins that modulate the DH activity (Ikeda

et al., 1999). Further, a ‘‘tailoring’’ glutathione S-transferase was

shown to equilibrate E and Z double bonds in hypothemycin

analogs (Reeves et al., 2008). However, no such accessory or

tailoring activities are encoded in the radicicol biosynthetic

gene clusters.

A comparative metabolic analysis leads us to propose a unify-

ing scheme for the biosynthesis of RALs and their isocoumarin

congeners in C. chiversii, P. chlamydosporia, and Pa. quadrisep-

tata (Hellwig et al., 2003; Wijeratne et al., 2006). The hrPKS and

the nrPKS collectively produce an ACP-bound 12(13)-dihydro-

14(15)-deepoxy nonaketide (Figure 2B). After the resorcylic

acid moiety is templated on the nrPKS, TE-catalyzed intramolec-

ular ester bond formation yields RALs, or spontaneous or

TE-catalyzed hydrolysis releases isocoumarins (Figure 5). The

absence of conversion of purified pochonin D and monocillin I

by PKS knockout mutants of C. chiversii or their crude protein

extracts leaves open the question of whether the ACP-bound re-

sorcylate thioesters or the free RALs and isocoumarins serve as

substrates for the subsequent tailoring reactions (Dorrestein

et al., 2005; Ma et al., 2008). Notably, in vitro reconstitution of

the CYP-mediated hydroxylation of hypothemycin was similarly

unsuccessful with free substrates, but proceeded in vivo using

PKS-generated substrates (Reeves et al., 2008). Either way,

the first tailoring reaction is an optional C6 chlorination to yield

pochonin D, to our knowledge the first detected natural product

from the pochonin-radicicol/chaetochiversin series. Skipping

the halogenation step shunts the pathway toward the production

of monocillins and paraphaeosphaerins. C14(15) epoxide forma-

tion provides the known natural products monocillin III and

pochonin A, still without the C12(13) cis double bond. The

production of C12 a-hydroxylated natural products by Pa. quad-

riseptata (hydroxymonocillin III and paraphaeosphaerin C), and

the biosynthesis of pochonin B by P. chlamydosporia suggest

a regio- and stereospecific hydroxylation reaction. The absence

of natural RALs (or their isocoumarin analogs) with C12-OH but
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without the C14(15) epoxide moiety suggests the precedence of

epoxidation over C12 hydroxylation. Because C12 corresponds

to an a carbon of the relevant polyketide chain extension unit, the

C12-OH cannot be derived by the PKS. It is possible, however,

that RadP and its equivalents catalyze C12 hydroxylation in ad-

dition to C14(15) epoxide formation: a single CYP performing two

distinct but specific tailoring steps is known in pikromycin/me-

thymycin biosynthesis (Xue et al., 1998). Finally, elimination of

water yields the C12(13) Z double bond in the cis RALs monocillin

I and radicicol, and in the cis isocoumarins paraphaeosphaerin A

and chaetochiversin A. The lack of acidity of the proton at C13 in

the C12-OH RALs excludes spontaneous dehydration and sug-

gests that this dehydration is catalyzed by an unidentified en-

zyme. The natural occurrence of the E isocoumarins para-

phaeosphaerin B and chaetochiversin B suggests that these

trans isocoumarins derive from a spontaneous cis/trans isomer-

ization during fermentations and/or the workup of the extracts.

SIGNIFICANCE

The resorcylic acid lactone (RAL) scaffold constitutes a rich

pharmacophore whereby different RALs act as specific in-

hibitors of the stress chaperone Hsp90 or mitogen-activated

protein kinases, and ligands for hormone receptors. Impor-

tantly, the inhibition of the evolutionarily conserved chaper-

one Hsp90 by the RAL radicicol leads to a combinatorial

blockade of multiple cancer-causing pathways in vitro. The

metabolic instability of radicicol, however, prevents its de-

ployment for broad-spectrum cancer chemotherapy, and

led to extensive combinatorial synthetic efforts to produce

more stable radicicol analogs. The cloning and functional

analysis of clustered genes for the biosynthesis of radicicol

from the endophytic fungus Chaetomium chiversii will facil-

itate combinatorial biosynthetic strategies to derive unnatu-

ral radicicol analogs and other RALs. The functional identifi-

cation of a pair of highly reducing and nonreducing PKSs

that are predicted to collaborate in the production of a single

polyketide chain for the radicicol core raises interesting

questions about the evolution of modularity in PKSs, and

on the programming rules that determine b-keto group re-

duction, starter unit choice, product chain length, and the

folding and cyclization of the nascent polyketide in fungal it-

erative PKSs. The functional identification of a regiospecific

chlorinase encoded in the radicicol biosynthetic cluster

highlights a group of conserved proteins in sequenced

fungal genomes that might similarly be involved in sub-

strate- and regiospecific halogenation reactions. These fun-

gal proteins share conserved active site architecture and

a conserved cofactor-binding domain with bacterial flavin-

dependent halogenases. Hitherto described only from pro-

karyotes, the existence of flavin-dependent halogenases is

now documented, to our knowledge, for the first time in

the kingdom of fungi.

EXPERIMENTAL PROCEDURES

Strains and Culture Conditions

Chaetomium chiversii CS-36-62 (Turbyville et al., 2006) was maintained on po-

tato dextrose agar (PDA; Difco). Agar surface culture fermentations were done

Figure 5. Model for the Biosynthetic ‘‘Tailoring’’ of Radicicol-type RALs and Biogenetically Related Isocoumarins

See text for details.
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by growing C. chiversii or its derivatives on PDA plates at 28�C for 7 days.

Escherichia coli Epi300 and fosmid pCCFOS1 (Epicenter) were used for

C. chiversii genomic library construction, and E. coli DH10B and plasmid

pJET1 (Fermentas) served for routine cloning and sequencing. Agrobacterium

tumefaciens LBA4404 (Invitrogen) with the plasmid pAg1-H3 (Zhang et al.,

2003) was used for C. chiversii transformation.

Cloning, Sequencing, and Sequence Analysis

Putative PKS- and halogenase-encoding sequences were amplified by PCR

from C. chiversii total DNA as the template, and used to isolate overlapping

fosmids from a genomic DNA library as described in Supplemental Data. Over-

lapping fragments of �2 kb in size were generated from the selected fosmids

by partial HaeIII digests, and cloned into pJET1 to produce double-stranded

templates for DNA sequencing. Sequencher 4.7 (Gene Codes) and the Vec-

torNTI suite 9.0 (Invitrogen) were used for sequence assembly and analysis.

HMM-based gene models were built with FGENESH (Softberry). Additional

exon/intron boundary predictions from SPLICEVIEW (http://l25.itba.mi.cnr.it/

�webgene/wwwspliceview.html/) and multiple sequence alignments were

also considered for the refinement of the initial gene models. The UMA algo-

rithm was used to predict domain boundaries in PKSs (Udwary et al., 2002).

The sequences of the radicicol biosynthetic locus (EU980390) and the

ccPks01 (EU980392) and ccHmt genes (EU980391) appear in GenBank.

Phylogenomic Analysis of Trp Halogenase Superfamily Proteins

Twenty-nine deduced proteins annotated as pfam04820 Trp halogenase and

five deduced proteins annotated as PRK10015 oxidoreductase were collected

from the currently (May 2008) available 34 fungal genome sequences at

the Fungal Genome Initiative (FGI) website (http://www.broad.mit.edu/

annotation/fungi/fgi/). Selected bacterial PrnC-type (Hornung et al., 2007)

and PrnA-type halogenases (all with the pfam04820 conserved domain) and

bacterial PRK10015 oxidoreductases were also included. A multiple sequence

alignment of these sequences with the C. chiversii RadH, the putative

halogenase-methyltransferase bifunctional protein ccHmt, and the putative

P. chlamydosporia Rdc2 radicicol halogenase were generated in VectorNTI.

Bootstrapped trees were calculated in CLUSTALX with the neighbor-joining

method using 1000 repeats, and the phylogram was plotted with NJPlot

(http://pbil.univ-lyon1.fr/software/njplot.html/).

Gene Disruptions in C. chiversii

The constructions of the gene disruption vectors for Agrobacterium-mediated

transformation (Zhang et al., 2003) are described in Supplemental Data.

Putative transformants were selected on PDA plates supplemented with

350 mg/ml hygromycin and 500 mg/ml carbenicillin (final concentrations) after

5–7 days of incubation at 28�C. Correct integration of the disruption cassettes

at both the 50 and the 30 flanking DNA regions were validated by Southern hy-

bridizations using the digoxigenin-labeled (Roche Applied Science) hph gene

as the probe. Three ectopic integrant and three homologous replacement iso-

lates were evaluated independently for RAL production for each gene knock-

out experiment.

Extraction and Analysis of RALs

Radicicol, monocillin I, and pochonin D were isolated from C. chiversii agar

surface fermentations (Turbyville et al., 2006). HPLC analyses and reverse-

phase preparative HPLC were done on an HP-1050 equipped with a Kromasil

C18 column (5 mm, 250 mm 3 4.6 mm); MeOH:H2O = 60:40 at a flow rate of

0.8 ml/min; detection at 220 nm. Accurate mass measurements, 1H NMR,

and DQF-COSY spectra for isolated RALs are reported in Supplemental Data.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, one

figure, and Supplemental References and can be found with this article

online at http://www.cell.com/chemistry-biology/supplemental/S1074-5521

(08)00408-0/.
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